Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Graph Model ; 127: 108699, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38150839

RESUMO

Improving the light-harvesting efficiency and boosting open circuit voltage are crucial challenges for enhancing the efficiency of organic solar cells. This work introduces seven new molecules (SA1-SA7) to upgrade the optoelectronic and photovoltaic properties of Q-C-F molecule-based solar cells. All recently designed molecules have the same alkyl-substituted Quinoxaline core and CPDT donor but vary in the end-capped acceptor subunits. All the investigated molecules have revealed superior properties than the model (R) by having absorbance ranging from 681 nm to 782 nm in the gaseous medium while 726 nm-861 nm in chloroform solvent, with the lowest band gap ranging from 1.91 to 2.19 eV SA1 molecule demonstrated the highest λmax (861 nm) in chloroform solvent and the lowest band gap (1.91 eV). SA2 molecule has manifested highest dipole moment (4.5089 D), lower exciton binding energy in gaseous (0.33 eV) and chloroform solvent (0.47 eV), and lower charge mobility of hole (0.0077693) and electron (0.0042470). At the same time, SA7 showed the highest open circuit voltage (1.56 eV) and fill factor (0.9166) due to solid electron-pulling acceptor moieties. From these supportive outcomes, it is inferred that our computationally investigated molecules may be promising candidates to be used in advanced versions of OSCs in the upcoming period.


Assuntos
Clorofórmio , Quinoxalinas , Elétrons , Gases , Solventes
2.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38004443

RESUMO

Cancer is a major disease that threatens human health all over the world. Intervention and prevention in premalignant processes are successful ways to prevent cancer from striking. On the other hand, the marine ecosystem is a treasure storehouse of promising bioactive metabolites. The use of such marine products can be optimized by selecting a suitable nanocarrier. Therefore, epi-obtusane, previously isolated from Aplysia oculifera, was investigated for its potential anticancer effects toward cervical cancer through a series of in vitro assays in HeLa cells using the MTT assay method. Additionally, the sesquiterpene was encapsulated within a liposomal formulation (size = 130.8 ± 50.3, PDI = 0.462, zeta potential -12.3 ± 2.3), and the antiproliferative potential of epi-obtusane was investigated against the human cervical cancer cell line HeLa before and after encapsulation with liposomes. Epi-obtusane exhibited a potent effect against the HeLa cell line, while the formulated molecule with liposomes increased the in vitro antiproliferative activity. Additionally, cell cycle arrest analysis, as well as the apoptosis assay, performed via FITC-Annexin-V/propidium iodide double staining (flow cytofluorimetry), were carried out. The pharmacological network enabled us to deliver further insights into the mechanism of epi-obtusane, suggesting that STAT3 might be targeted by the compound. Moreover, molecular docking showed a comparable binding score of the isolated compound towards the STAT3 SH2 domain. The targets possess an anticancer effect through the endometrial cancer pathway, regulation of DNA templated transcription, and nitric oxide synthase, as mentioned by the KEGG and ShinyGo 7.1 databases.

3.
Future Med Chem ; 15(18): 1719-1738, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37772542

RESUMO

There has been an increasing trend in the design of novel pyrazole derivatives for desired biological applications. For a cost-effective strategy, scientists have implemented various computational drug design tools to go hand in hand with experiments for the design and discovery of potentially effective pyrazole-based therapeutics. This review highlights the milestones of pyrazole-containing inhibitors and the use of molecular modeling techniques in conjunction with experimental studies to provide a view of the binding mechanism of these compounds. The review focuses on the established targets that play a key role in cancer therapy, including proteins involved in tubulin polymerization, carbonic anhydrase and tyrosine kinase. Overall, using both experimental and computational methods in drug design represents a promising approach to cancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Modelos Moleculares , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Pirazóis/química , Neoplasias/tratamento farmacológico , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular
4.
Eur J Med Chem ; 259: 115712, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37567059

RESUMO

Several studies have indicated the potential therapeutic outcomes of combining selective COX-2 inhibitors with tubulin-targeting anticancer agents. In the current study, a novel series of thiazolidin-4-one-based derivatives (7a-q) was designed by merging the pharmacophoric features of some COXs inhibitors and tubulin polymerization inhibitors. Compounds 7a-q were synthesized and evaluated for their cytotoxic activity against MCF7, HT29, and A2780 cancer cell lines (IC50 = 0.02-17.02 µM). The cytotoxicity of 7a-q was also assessed against normal MRC5 cells (IC50 = 0.47-13.46 µM). Compounds 7c, 7i, and 7j, the most active in the MTT assay, significantly reduced the number of HT29 colonies compared to the control. Compounds 7c, 7i, and 7j also induced significant decreases in the tumor volumes and masses in Ehrlich solid carcinoma-bearing mice compared to the control. The three compounds also exhibited significant anti-HT29 migration activity in the wound-healing assay. They have also induced cell cycle arrest in HT29 cells at the S and G2/M phases. In addition, they induced significant increases in both early and late apoptotic events in HT29 cells compared to the control, where 7j showed the highest effect. On the other hand, compound 7j (1 µM) displayed weak inhibitory activity against tubulin polymerization compared to colchicine (3 µM). On the other hand, compounds 7a-q inhibited the activity of COX-2 (IC50 = 0.42-29.11 µM) compared to celecoxib (IC50 = 0.86 µM). In addition, 7c, 7i, and 7j showed moderate inhibition of inflammation in rats compared to indomethacin, with better GIT safety profiles. Molecular docking analysis revealed that 7c, 7i, and 7j have higher binding free energies towards COX-2 than COX-1. These above results suggested that 7j could serve as a potential anticancer drug candidate.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Ratos , Camundongos , Humanos , Animais , Feminino , Linhagem Celular Tumoral , Citotoxinas/farmacologia , Tubulina (Proteína)/metabolismo , Simulação de Acoplamento Molecular , Ciclo-Oxigenase 2/metabolismo , Anti-Inflamatórios/farmacologia , Antineoplásicos/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade
5.
J Mol Graph Model ; 125: 108580, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37544020

RESUMO

To intensify the photovoltaic properties of organic solar cells, density functional theory (DFT) based computational techniques were implemented on six non-fullerene A-D-A type small molecules (N1-N6) modified from reference molecule (R) which consists of phenazine fused with 1,4- Dimethyl-4H-3,7-dithia-4-aza- cyclopenta [α] pentalene on both sides with one of its phenyl rings acting as the central donor unit, further attached with 2-(5,6-Difluoro-2-methylene-3-oxo-indan-1-ylidene)-malononitrile acceptor groups at terminal sites. All proposed compounds have a phenazine base modified with a variety of substituents at the terminals. Transition density matrix, density of states, frontier molecular orbitals, intramolecular charge transfer abilities and optoelectronic properties of these compounds were investigated using B3LYP/6-31G (d, p) and B3LYP/6-31G++ (d,p) level of theory. All six designed compounds exhibited a bathochromic sift in their λmax as compared to the R molecule. All designed molecules also have reduced band gap and smaller excitation energy than R. Among all, N6 exhibited highest λmax and lowest bandgap as compared to reference molecule indicating its promising photovoltaic properties. Decreased hole and electron reorganization energy in several of the suggested compounds is indicative of greater charge mobility in them. PTB7-Th donor was employed to calculate open circuit voltage of all investigated molecules. N1-N5 molecules had improved optoelectronic properties, significant probable power conversion efficiency as evident from their absorption aspects, high values of Voc, and fill factor, compared to R molecule. Designed A-D-A type NF based molecules make OSCs ideal for use in wearable devices, building-integrated photovoltaics and smart fabrics.


Assuntos
Osteosclerose , Fenazinas , Humanos , Elétrons
6.
Molecules ; 28(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446914

RESUMO

Acute myeloid leukemia (AML) is one of the cancers that grow most aggressively. The challenges in AML management are huge, despite many treatment options. Mutations in FLT3 tyrosine kinase receptors make the currently available therapies less responsive. Therefore, there is a need to find new lead molecules that can specifically target mutated FLT3 to block growth factor signaling and inhibit AML cell proliferation. Our previous studies on FLT3-mutated AML cells demonstrated that ß-elemene and compound 5a showed strong inhibition of proliferation by blocking the mutated FLT3 receptor and altering the key apoptotic genes responsible for apoptosis. Furthermore, we hypothesized that both ß-elemene and compound 5a could be therapeutically effective. Therefore, combining these drugs against mutated FLT3 cells could be promising. In this context, dose-matrix combination-based cellular inhibition analyses, cell morphology studies and profiling of 43 different apoptotic protein targets via combinatorial treatment were performed. Our studies provide strong evidence for the hypothesis that ß-elemene and compound 5a combination considerably increased the therapeutic potential of both compounds by enhancing the activation of several key targets implicated in AML cell death.


Assuntos
Leucemia Mieloide Aguda , Humanos , Oxindóis/farmacologia , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/metabolismo , Mutação , Apoptose , Tirosina Quinase 3 Semelhante a fms/genética , Inibidores de Proteínas Quinases/farmacologia
7.
J Mol Graph Model ; 124: 108537, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37321062

RESUMO

In the present work, the drug-loading efficacy of graphyne (GYN) for doxorubicin (DOX) drug is investigated for the first time by using density functional theory (DFT). Doxorubicin drug is effective in the cure of numerous types of cancer including bone cancer, gastric, thyroid, bladder, ovarian, breast, and soft tissue cancer. Doxorubicin drug prevents the cell division process by intercalating in the double-helix of DNA and stopping its replication. The optimized, geometrical, energetic, and excited-state characteristics of graphyne (GYN), doxorubicin drug (DOX), and doxorubicin-graphyne complex (DOX@GYN complex) are calculated to see how effective it is as a carrier. The DOX drug interacted with GYN with an adsorption-energy of -1.57 eV (gas-phase). The interaction of GYN with DOX drug is investigated using NCI (non-covalent interaction) analysis. The findings of this analysis showed that the DOX@GYN complex has weak forces of interaction. Charge transfer from doxorubicin drug to GYN during DOX@GYN complex formation is described by charge-decomposition analysis and HOMO-LUMO analysis. The increased dipole-moment (8.41 D) of the DOX@GYN in contrast with therapeutic agent DOX and GYN indicated that the drug will move easily in the biochemical system. Furthermore, the photo-induced electron-transfer process is explored for excited states, and it reveals that upon interaction, fluorescence-quenching will occur in the complex DOX@GYN. In addition, the influence of the positive and negative charge states on the GYN and DOX@GYN is also considered. Overall, the findings indicated that the GYN could be exploited as an effective drug-transporter for the delivery of doxorubicin drug. Investigators will be inspired to look at another 2D nanomaterials for drug transport applications as a result of this theoretical work.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Portadores de Fármacos/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Nanoestruturas/química , Linhagem Celular Tumoral
8.
J Mol Graph Model ; 123: 108505, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37220700

RESUMO

In this study, nine new electron rich compounds are presented, and their electronic, geometrical, and nonlinear optical (NLO) characteristics have been investigated by using the Density functional theory. The basic design principle of these compounds is placing alkaline earth metal (AEM) inside and alkali metal (AM) outside the hexaammine complexant. The properties of nine newly designed compounds are contrasted with the reference molecule (Hexaammine). The effect of this doping on Hexaamine complexant is explored by different analyses such as electron density distribution map (EDDM), frontier molecular orbitals (FMOs), density of states (DOS) absorption maximum (λmax), hyperpolarizabilities, dipole moment, transition density matrix (TDM). Non-covalent interaction (NCI) study assisted with isosurfaces has been accomplished to explore the vibrational frequencies and types of synergy. The doping of hexaammine complexant with AM and AEM significantly improved its characteristics by reducing values of HOMO-LUMO energy gaps from 10.7eV to 3.15eV compared to 10.7 eV of hexaammine. The polarizability and hyperpolarizability (αo and ßo) values inquisitively increase from 72 to 919 au and 4.31 × 10-31 to 2.00 × 10-27esu respectively. The higher values of hyperpolarizability in comparison to hexaammine (taken as a reference molecule) are credited to the presence of additional electrons. The absorption profile of the newly designed molecules clearly illustrates that they are highly accompanied by higher λmax showing maximum absorbance in red and far-red regions ranging from 654.07 nm to 783.94 nm. These newly designed compounds have superior outcomes having effectiveness for using them as proficient NLO materials and have a gateway for advanced investigation of more stable and highly progressive NLO materials.


Assuntos
Álcalis , Metais Alcalinoterrosos , Modelos Moleculares , Conformação Molecular
9.
ACS Omega ; 8(12): 11118-11137, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37008161

RESUMO

Among the blended components of a photoactive layer in organic photovoltaic (OPV) cells, the acceptor is of high importance. This importance is attributed to its increased ability to withdraw electrons toward itself for their effective transport toward the respective electrode. In this research work, seven new non-fullerene acceptors were designed for their possible utilization in the OPVs. These molecules were designed through side-chain engineering of the PTBTP-4F molecule, with its fused pyrrole ring-based donor core and different strongly electron-withdrawing acceptors. To elucidate their effectiveness, the band gaps, absorption characteristics, chemical reactivity indices, and photovoltaic parameters of all of the architecture molecules were compared with the reference. Through various computational software, transition density matrices, graphs of absorption, and density of states were also plotted for these molecules. From some chemical reactivity indices and electron mobility values, it was proposed that our newly designed molecules could be better electron-transporting materials than the reference. Among all, TP1, due to its most stabilized frontier molecular orbitals, lowest band gap and excitation energies, highest absorption maxima in both the solvent and gas medium, least hardness, highest ionization potential, superior electron affinity, lowest electron reorganization energy, as well as highest rate constant of charge hopping, seemed to be the best molecule in terms of its electron-withdrawing abilities in the photoactive layer blend. In addition, in terms of all of the photovoltaic parameters, TP4-TP7 was perceived to be better suited in comparison to TPR. Thus, all our suggested molecules could act as superior acceptors to TPR.

10.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36986525

RESUMO

1,3,4-Oxadiazole moiety is a crucial pharmacophore in many biologically active compounds. In a typical synthesis, probenecid was subjected to a sequence of reactions to obtain a 1,3,4-oxadiazole-phthalimide hybrid (PESMP) in high yields. The NMR (1H and 13C) spectroscopic analysis initially confirmed the structure of PESMP. Further spectral aspects were validated based on a single-crystal XRD analysis. Experimental findings were confirmed afterwards by executing a Hirshfeld surface (HS) analysis and quantum mechanical computations. The HS analysis showed the role of the π⋯π stacking interactions in PESMP. PESMP was found to have a high stability and lower reactivity in terms of global reactivity parameters. α-Amylase inhibition studies revealed that the PESMP was a good inhibitor of α-amylase with an s value of 10.60 ± 0.16 µg/mL compared with that of standard acarbose (IC50 = 8.80 ± 0.21 µg/mL). Molecular docking was also utilized to reveal the binding pose and features of PESMP against the α-amylase enzyme. Via docking computations, the high potency of PESMP and acarbose towards the α-amylase enzyme was unveiled and confirmed by docking scores of -7.4 and -9.4 kcal/mol, respectively. These findings shine a new light on the potential of PESMP compounds as α-amylase inhibitors.

11.
RSC Adv ; 13(11): 7535-7553, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36908528

RESUMO

Non-fused ring-based OSCs are an excellent choice, which is attributed to their low cost and flexibility in applications. However, developing efficient and stable non-fused ring-based OSCs is still a big challenge. In this work, with the intent to increase V oc for enhanced performance, seven new molecules derived from a pre-existing A-D-A type A3T-5 molecule are proposed. Different important optical, electronic and efficiency-related attributes of molecules are studied using the DFT approach. It is discovered that newly devised molecules possess the optimum features required to construct proficient OSCs. They possess a small band gap ranging from 2.22-2.29 eV and planar geometries. Six of seven newly proposed molecules have less excitation energy, a higher absorption coefficient and higher dipole moment than A3T-5 in both gaseous and solvent phases. The A3T-7 molecule exhibited the maximum improvement in optoelectronic properties showing the highest λ max at 697 nm and the lowest E x of 1.77 eV. The proposed molecules have lower ionization potential values, reorganization energies of electrons and interaction coefficients than the A3T-5 molecule. The V oc of six newly developed molecules is higher (V oc ranging from 1.46-1.72 eV) than that of A3T-5 (V oc = 1.55 eV). Similarly, almost all the proposed molecules except W6 exhibited improvement in fill factor compared to the A3T-5 reference. This remarkable improvement in efficiency-associated parameters (V oc and FF) proves that these molecules can be successfully used as an advanced version of terthiophene-based OSCs in the future.

12.
J Biomol Struct Dyn ; 41(23): 13977-13992, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36883864

RESUMO

The failure of chemotherapy in the treatment of carcinoma is mainly due to the development of multidrug resistance (MDR), which is largely caused by the overexpression of P-glycoprotein (P-gp/ABCB1/MDR1). Until recently, the 3D structure of the P-gp transporter has not been experimentally resolved, which restricted the discovery of prospective P-gp inhibitors utilizing in silico techniques. In this study, the binding energies of 512 drug candidates in clinical or investigational stages were assessed as potential P-gp inhibitors employing in silico methods. On the basis of the available experimental data, the performance of the AutoDock4.2.6 software to predict the drug-P-gp binding mode was initially validated. Molecular docking and molecular dynamics (MD) simulations combined with molecular mechanics-generalized Born surface area (MM-GBSA) binding energy computations were subsequently conducted to screen the investigated drug candidates. Based on the current results, five promising drug candidates, namely valspodar, dactinomycin, elbasvir, temsirolimus, and sirolimus, showed promising binding energies against P-gp transporter with ΔGbinding values of -126.7, -112.1, -111.9, -102.9, and -101.4 kcal/mol, respectively. The post-MD analyses revealed the energetical and structural stabilities of the identified drug candidates in complex with the P-gp transporter. Furthermore, in order to mimic the physiological conditions, the potent drugs complexed with the P-gp were subjected to 100 ns MD simulations in an explicit membrane-water environment. The pharmacokinetic properties of the identified drugs were predicted and demonstrated good ADMET characteristics. Overall, these results indicated that valspodar, dactinomycin, elbasvir, temsirolimus, and sirolimus hold promise as prospective P-gp inhibitors and warrant further invitro/invivo investigations.


Assuntos
Resistência a Múltiplos Medicamentos , Neoplasias , Humanos , Simulação de Acoplamento Molecular , Dactinomicina/uso terapêutico , Estudos Prospectivos , Neoplasias/tratamento farmacológico , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/uso terapêutico , Sirolimo , Descoberta de Drogas , Resistencia a Medicamentos Antineoplásicos
13.
Sci Rep ; 13(1): 2146, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750593

RESUMO

Sirtuin 2 (SIRT2) is a member of the sirtuin protein family, which includes lysine deacylases that are NAD+-dependent and organize several biological processes. Different forms of cancer have been associated with dysregulation of SIRT2 activity. Hence, identifying potent inhibitors for SIRT2 has piqued considerable attention in the drug discovery community. In the current study, the Natural Products Atlas (NPAtlas) database was mined to hunt potential SIRT2 inhibitors utilizing in silico techniques. Initially, the performance of the employed docking protocol to anticipate ligand-SIRT2 binding mode was assessed according to the accessible experimental data. Based on the predicted docking scores, the most promising NPAtlas molecules were selected and submitted to molecular dynamics (MD) simulations, followed by binding energy computations. Based on the MM-GBSA binding energy estimations over a 200 ns MD course, three NPAtlas compounds, namely NPA009578, NPA006805, and NPA001884, were identified with better ΔGbinding towards SIRT2 protein than the native ligand (SirReal2) with values of - 59.9, - 57.4, - 53.5, and - 49.7 kcal/mol, respectively. On the basis of structural and energetic assessments, the identified NPAtlas compounds were confirmed to be steady over a 200 ns MD course. The drug-likeness and pharmacokinetic characteristics of the identified NPAtlas molecules were anticipated, and robust bioavailability was predicted. Conclusively, the current results propose potent inhibitors for SIRT2 deserving more in vitro/in vivo investigation.


Assuntos
Antineoplásicos , Sirtuína 2 , Sirtuína 2/metabolismo , Relação Estrutura-Atividade , Ligantes , Descoberta de Drogas , Simulação de Acoplamento Molecular
15.
J Mol Graph Model ; 121: 108428, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36801585

RESUMO

This study focused on modeling and density functional theory (DFT) analysis of reference (AI1) and designed structures (AI11-AI15), based on the thieno-imidazole core, in order to create profitable candidates for solar cells. All the optoelectronic properties of the molecular geometries were computed using DFT and time dependent-DFT approaches. The influence of terminal acceptors on the bandgaps, absorption, hole and electron mobilities, charge transfer capabilities, fill factor, dipole moment, etc. Of the recently designed structures (AI11-AI15), as well as reference (AI1), were evaluated. Optoelectronics and chemical parameters of newly architecture geometries were shown to be superior to the cited molecule. The FMOs and DOS graphs also demonstrated that the linked acceptors remarkably improved the dispersion of charge density in the geometries under study, particularly in AI11 and AI14. Calculated values of binding energy and chemical potential confirmed the thermal stability of the molecules. All the derived geometries surpassed the AI1 (Reference) molecule in terms of maximum absorbance ranging from 492 to 532 nm (in chlorobenzene solvent) and a narrower bandgap ranging from 1.76 to 1.99eV. AI15 had the lowest exciton dissociation energy of 0.22eV as well as lowest electrons and hole dissociation energies, while AI11 and AI14 showed highest VOC, fill factor, power conversion efficiency (PCE), IP and EA (owing to presence of strong electron pulling cyano (CN) moieties at their acceptor portions and extended conjugation) than all the examined molecules, implying that they could be used to build elite solar cells with enhanced photovoltaic attributes.


Assuntos
Elétrons , Cloreto de Sódio , Teoria da Densidade Funcional , Solventes
16.
RSC Adv ; 13(7): 4641-4655, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36760314

RESUMO

In the current DFT study, seven dimethoxyl-indaceno dithiophene based semiconducting acceptor molecules (ID1-ID7) are designed computationally by modifying the parent molecule (IDR). Here, based on a DFT exploration at a carefully selected level of theory, we have compiled a list of the optoelectronic properties of ID1-ID7 and IDR. In light of these results, all newly designed molecules, except ID5 have shown a bathochromic shift in their highest absorbance (λ max). ID1-ID4, ID6 and ID7 molecules have smaller band gap (E gap) and excitation energy (E x). IP of ID5 is the smallest and EA of ID1 is the largest among all others. Compared to the parent molecule, ID1-ID3 have increased electron mobility, with ID1 being the most improved in hole mobility. ID4 had the best light harvesting efficiency in this investigation, due to its strongest oscillator. The acceptor molecules' open-circuit voltages (V OC) were computed after being linked to the PTB7-Th donor molecule. Fill factor (FF) and normalized V OC of ID1-ID7 were calculated and compared to the parent molecule. Based on the outcomes of this study, the modified acceptors may be further scrutinised for empirical usage in the production of organic solar cells with enhanced photovoltaic capabilities.

17.
ACS Omega ; 8(7): 6968-6981, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36844536

RESUMO

The structure-based design introduced indoles as an essential motif in designing new selective estrogen receptor modulators employed for treating breast cancer. Therefore, here, a series of synthesized vanillin-substituted indolin-2-ones were screened against the NCI-60 cancer cell panel followed by in vivo, in vitro, and in silico studies. Physicochemical parameters were evaluated with HPLC and SwissADME tools. The compounds demonstrated promising anti-cancer activity for the MCF-7 breast cancer cell line (GI = 6-63%). The compound with the highest activity (6j) was selective for the MCF-7 breast cancer cell line (IC50 = 17.01 µM) with no effect on the MCF-12A normal breast cell line supported by real-time cell analysis. A morphological examination of the used cell lines confirmed a cytostatic effect of compound 6j. It inhibited both in vivo and in vitro estrogenic activity, triggering a 38% reduction in uterine weight induced by estrogen in an immature rat model and hindering 62% of ER-α receptors in in vitro settings. In silico molecular docking and molecular dynamics simulation studies supported the stability of the ER-α and compound 6j protein-ligand complex. Herein, we report that indolin-2-one derivative 6j is a promising lead compound for further pharmaceutical formulations as a potential anti-breast cancer drug.

18.
RSC Adv ; 13(10): 6530-6547, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36845585

RESUMO

Modifying the central core is a very efficient strategy to boost the performance of non-fullerene acceptors. Herein five non-fullerene acceptors (M1-M5) of A-D-D'-D-A type were designed by substituting the central acceptor core of the reference (A-D-A'-D-A type) with different strongly conjugated and electron donating cores (D') to enhance the photovoltaic attributes of OSCs. All the newly designed molecules were analyzed through quantum mechanical simulations to compute their optoelectronic, geometrical, and photovoltaic parameters and compare them to the reference. Theoretical simulations of all the structures were carried out through different functionals with a carefully selected 6-31G(d,p) basis set. Absorption spectra, charge mobility, dynamics of excitons, distribution pattern of electron density, reorganization energies, transition density matrices, natural transition orbitals and frontier molecular orbitals, respectively of the studied molecules were evaluated at this functional. Among the designed structures in various functionals, M5 showed the most improved optoelectronic properties, such as the lowest band gap (2.18 e V), highest maximum absorption (720 nm), and lowest binding energy (0.46 eV) in chloroform solvent. Although the highest photovoltaic aptitude as acceptors at the interface was perceived to be of M1, its highest band gap and lowest absorption maxima lowered its candidature as the best molecule. Thus, M5 with its lowest electron reorganization energy, highest light harvesting efficiency, and promising open-circuit voltage (better than the reference), amongst other favorable features, outperformed the others. Conclusively, each evaluated property commends the aptness of designed structures to augment the power conversion efficiency (PCE) in the field of optoelectronics in one way or another, which reveals that a central un-fused core having an electron-donating capability with terminal groups being significantly electron withdrawing, is an effective configuration for the attainment of promising optoelectronic parameters, and thus the proposed molecules could be utilized in future NFAs.

19.
Viruses ; 15(1)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36680290

RESUMO

The emergence of the Coronavirus Disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to over 6 million deaths. The 3C-like protease (3CLpro) enzyme of the SARS-CoV-2 virus is an attractive druggable target for exploring therapeutic drug candidates to combat COVID-19 due to its key function in viral replication. Marine natural products (MNPs) have attracted considerable attention as alternative sources of antiviral drug candidates. In looking for potential 3CLpro inhibitors, the MNP database (>14,000 molecules) was virtually screened against 3CLpro with the assistance of molecular docking computations. The performance of AutoDock and OEDocking software in anticipating the ligand-3CLpro binding mode was first validated according to the available experimental data. Based on the docking scores, the most potent MNPs were further subjected to molecular dynamics (MD) simulations, and the binding affinities of those molecules were computed using the MM-GBSA approach. According to MM-GBSA//200 ns MD simulations, chetomin (UMHMNP1403367) exhibited a higher binding affinity against 3CLpro than XF7, with ΔGbinding values of −55.5 and −43.7 kcal/mol, respectively. The steadiness and tightness of chetomin with 3CLpro were evaluated, revealing the high stabilization of chetomin (UMHMNP1403367) inside the binding pocket of 3CLpro throughout 200 ns MD simulations. The physicochemical and pharmacokinetic features of chetomin were also predicted, and the oral bioavailability of chetomin was demonstrated. Furthermore, the potentiality of chetomin analogues −namely, chetomin A-D− as 3CLpro inhibitors was investigated. These results warrant further in vivo and in vitro assays of chetomin (UMHMNP1403367) as a promising anti-COVID-19 drug candidate.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Peptídeo Hidrolases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Cisteína Endopeptidases/metabolismo , Inibidores de Proteases/química , Antivirais/uso terapêutico
20.
J Biomol Struct Dyn ; 41(22): 12923-12937, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36688358

RESUMO

The potentiality of B12N12 and Al12N12 nanocarriers to adsorb Molnupiravir anti-COVID-19 drug, for the first time, was herein elucidated using a series of quantum mechanical calculations. Density function theory (DFT) was systematically utilized. Interaction (Eint) and adsorption (Eads) energies showed higher negative values for Molnupiravir···Al12N12 complexes compared with Molnupiravir···B12N12 analogs. Symmetry-adapted perturbation theory (SAPT) results proclaimed that the adsorption process was predominated by electrostatic forces. Notably, the alterations in the distributions of the molecular orbitals ensured that the B12N12 and Al12N12 nanocarriers were efficient candidates for delivering the Molnupiravir drug. From the thermodynamic perspective, the adsorption process of Molnupiravir drug over B12N12 and Al12N12 nanocarriers had spontaneous and exothermic nature. The ESP, QTAIM, NCI, and DOS observations exposed the tendency of BN and Al12N12 to adsorb the Molnupiravir drug. Overall, these findings proposed that the B12N12 and Al12N12 nanocarriers are efficient aspirants for the development of the Molnupiravir anti-COVID-19 drug delivery process.Communicated by Ramaswamy H. Sarma.


Assuntos
Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas , Adsorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...